What can we learn from the KZN ANA results?

Sarah Bansilal
University of KwaZulu-Natal
BansilalS@ukzn.ac.za

Abstract
The introduction of the Annual National Assessments (ANA) 2010 in South Africa offers an opportunity to identify strengths and weaknesses in teaching and learning literacy and numeracy in the early years of schooling. The purpose of this study was to analyse the ANA mathematics results for Grades 1 to 6, in the province of KwaZulu-Natal for 2010, with the intention of identifying broad trends in the results. The results reveal that the performance of learners was much poorer in the higher grades than in the lower grades with 78% of Grade 1 learners obtaining 50% or higher in the test while the corresponding percentage for Grade 6 was 12%. The disparities in performance per quintile prevalent in the Grade 12 examinations results are also evident at the primary level as indicated by these ANA results. An interesting finding is that for the small subgroup of learners whose home language is Afrikaans, their performance was highest across all the grades. The set up of the ANA is seen as a first step in providing information about the learning of numeracy and literacy at the beginning of the learners’ schooling and it is hoped that this leads to better planning and improvements across the various levels of schooling.

Introduction
The South African schooling system is a large sector and is divided into two bands. The first one is the General Education and Training (GET) band, which is compulsory for all children of school-going age. The second band is the optional Further Education (FET) band which ends with the Grade 12 exit examination commonly referred to as the “matric examination”. To get a picture of the size of the education sector in South Africa, we look at some statistics provided in the report Education statistics in South Africa 2009 (DBE, 2010). There were 14 122 305 learners (students) in the education system in 2009, who attended 32 103 education institutions and were served by 469 963 educators and lecturers. There were 25 906 ordinary schools in South Africa. KwaZulu-Natal (KZN) had 6 091, or 23.5% of the national total. These large numbers convey the extent of the challenges faced by the country in trying to improve the quality of education.

Spaull (2011:3) notes the development in thinking by educational researchers in his report: “What started out [almost] as an almost single-minded focus on access … has slowly developed into a…concept of meaningful access i.e. quality education for all”. In South Africa, we have largely achieved the concept of access for all to education. This claim is substantiated by the fact that in the GET phase (Grades R to 9), for example, the Gross Enrolment Ratio (GER) is 93% (DoE, 2009), where GER is defined as the number of learners, regardless of age, enrolled in a specific school phase as a percentage of the total appropriate school-age population. Spaull notes that according to the DBE, 98% of children in SA who enter Grade 1 are still in the system in Grade 5 as compared to say, Mozambique, where only 60% still survive in the schooling system there.
As a country, South Africa is making progress towards meeting the goal of ensuring that all children who should be in school are there. Thereafter we need to move our goalposts to make our next goal the provision of quality education for all who attend school. Undoubtedly, the Annual National Assessments (ANA) is a promising start to this end, as one of its key expected effects, is to serve as a diagnostic tool identifying areas of strengths and weaknesses in teaching and learning numeracy and literacy. However, we still have a long road ahead of us in making improvements to the education system in South Africa. ANA offers possibilities of information about what learners know and can do in mathematics and literacy. Thus interventions to improve learning can be based on accurate information, and improvements in education can also be judged by whether learners’ literacy and numeracy levels have increased as a result of the interventions. In this paper, we look at some of the easily available data from the results of the 2010 KZN ANA, which was written at the beginning of 2011, to identify broad trends and patterns in the results. The paper also identifies possible areas for more research that can improve the efficacy of ANA as an evaluative and learning tool.

Background

Statistics relating to the poor performance of South African learners in the various levels of schooling are widely available. The performance of Grade 8 students in the *Trends in International Mathematics and Science Study* (TIMMS) of 1995, 1999 and 2003 (Howie, 2001, 2004; Reddy, 2006; Soudien, 2007) revealed that South African students had the lowest scores amongst 39 countries. The results of the Southern and Eastern Africa Consortium for Monitoring Educational Quality (SAQMEQ) tests which are administered to students in 15 African countries indicate that South African Grade 6 students fare poorly in mathematics when compared to students from poorer countries such as Botswana and Zimbabwe. The results for rural students indicate that South Africa ranks 12 out of 15 for mathematics scores (Spaull, 2011). In the past two decades, there have been numerous curriculum changes that have been instituted to improve the levels of educational achievement in South Africa. Despite many government interventions and policy changes, poor quality teaching and learning seem to be stubborn relics of the apartheid past.

The latest intervention is in the area of assessment, with the introduction of the Annual National Assessments (ANA) 2010, which was written by learners in 2011 in literacy and numeracy. The main intention of ANA is to provide benchmarking and diagnostic information about learners’ understanding of concepts (DBE, 2011). It was anticipated that by identifying baseline knowledge, the various stakeholders in education would be able to make informed decisions and relevant interventions.

A definition of assessment, taken from the South African Assessment Policy (DoE 1998: 3), reads as follows:

> Assessment is the process of identifying, gathering and interpreting information about a learner’s achievement, as measured against nationally agreed outcomes for a particular phase of learning. It involves four steps: generating and collecting evidence of achievement, evaluating this evidence against the outcomes, recording the findings of this evaluation and using this information to assist the learner’s development and improve the process of learning and teaching.

We see that the ANA process as run by the National Department of Education meets the first, second and third steps. However the fourth step, that of using the information to assist learners’ development and
improve the process of learning and teaching, rests on how well teachers and school management take up the information. Black et al. (2004: 10) point out the important role of assessment in learning:

Assessment for learning is any assessment for which the first priority in its design and practice is to serve the purpose of promoting students' learning ...

An assessment activity can help learning if it provides information that teachers and their students can use as feedback in assessing themselves and one another and in modifying the teaching and learning activities in which they are engaged. Such assessment becomes "formative assessment" when the evidence is actually used to adapt the teaching work to meet learning needs.

It is thus clear that the use of assessment feedback as formative assessment can only be effected by the teacher in conjunction with supportive heads of department, subject advisors and school management. This could prove to be a weak link in ANA because it rests on the capacity of provincial education departments, school management, districts and teachers themselves. The National DBE has taken many of the necessary steps to ensure a sound instrument. These measures include versioning of Grades 1, 2 and 3 ANA test papers from English to all other official languages; the teacher guiding the learners through the test by reading each question out aloud at Grade 1 and 2; inclusion of some free response items so that the tests were not only multiple choice items; a reduction of reliance on real life contexts, as well as a comprehensive report that was available a few months after the administration of the tests. The irony is that by putting in these measures, the validity of the tool may be affected because the administration of the test is dependent on teachers for a key aspect which they could compromise if they go beyond what they are actually supposed to do. In the previous Grade 9 national assessment tool, the Common Tasks for Assessment (CTA), teachers were granted a central role but received little training on what they could and could not do - resulting in them going beyond what was expected, and thereby compromising the assessment function of the tool (Bansilal and Khan, 2010).

Carr et al. (2004) note that assessment is an integral part of the learning process and has both formative and summative functions. These two sets of functions are mainly a matter of when they occur in relation to their purpose, and not a differentiation of rigour or quality. Formative assessment is an on-going informed interaction between the teacher and student designed to enhance student learning. Therefore it provides feedback to the teacher and to the student about present understanding and skill development in order to determine a way forward. (Carr et al., 2004: 6). This perspective of assessment also recognises that the teacher is a key person in using tools such as ANA for formative assessment.

It is essential to ensure that ANA is a fair and valid tool, for example, in making sure that the levels of the items are fair and not too high or too low. The DBE in ANA have used four competency levels (DBE, 2011). Only a direct analysis of the items can confirm the suitability, which is beyond the scope of this paper. However, such poor results as will be presented, may be either because of a predominance of high levels, which should not constitute more than 20%, or because the classification of items may not be an accurate curriculum match. Of course, the results of previous international and national assessments also suggest that our children are generally poor in mathematics and literacy.

South Africa has had experience of both international assessments and national assessment. Some of the international tests have been the Trends in International Mathematics and Science Study (TIMSS), the Progress in International Reading Literacy Study (PIRLS) as well as the Southern African and Eastern African Consortium for Monitoring Educational Quality (SACMEQ). Nationally, there has been the
Systemic Evaluation programme, run in 2001, 2004 and 2007, involving in each run one grade and a sample of between 35 000 and 55 000 learners. The sample for TIMSS in 2003 was 8952 (Dempster & Reddy, 2007). In the SACMEQ, in 2007, the sample was 9071 learners in South Africa (Spaull, 2011). ANA 2010 was a mammoth undertaking because there were 5 841 562 learners from 19 619 schools, in total, who participated (DBE, 2011).

For ANA in 2010 in KZN, there were 4551 schools, with approximately 1.2 million learners, and 2.4 million scripts. Schools were responsible for administration and marking with timely availability of results. The Heads of Department, district and provincial officials were responsible for moderation. The DBE introduced an additional layer of monitoring with a sample of schools, referred to as verification ANA when compared to universal ANA carried out by all schools. Nationally there were 1800 schools, with 200 in KZN selected for verification ANA (100 per grade 3 and 100 per grade 6). The verification introduced exceptional controls with respect to administration and marking of the tests (DBE, 2011: 12). An independent agency, the Human Sciences Research Council (HSRC), was appointed to manage verification ANA.

This paper focuses on the reported performance of the KZN learners in ANA mathematics. Learners have been placed in specific achievement levels of performance according to the percentage scores they obtained out of the total for each test. The achievement levels were classified as shown in the table below:

<table>
<thead>
<tr>
<th>Levels</th>
<th>Descriptor of competence</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Not achieved</td>
<td>Less than 35%</td>
</tr>
<tr>
<td>2</td>
<td>Partially achieved</td>
<td>At least 35% but less than 50%</td>
</tr>
<tr>
<td>3</td>
<td>Achieved</td>
<td>At least 50% but less than 70%</td>
</tr>
<tr>
<td>4</td>
<td>Outstanding</td>
<td>At least 70%</td>
</tr>
</tbody>
</table>

Table 1: Levels of performance in ANA

Methodology

This study can be viewed as a qualitative study where data were generated from the national reports of ANA 2010. The method used was a document analysis of available information, and could be viewed as secondary analysis of available data. Cohen, Manion and Morrisson (2000) argue that content analysis could be used in the analysis of educational documents. In this case, we are conducting an analysis of the reported performance of KZN learners in the 2010 ANA. It is important to note that the Grade 3 ANA was written by Grade 4 learners at the beginning of 2011, while the Grade 4 ANA was written by Grade 5 learners at the beginning of the Grade 6 year. The purpose of this study was to analyse the ANA mathematics results in KZN for 2010, with the intention of identifying broad trends in the results.

Results and Discussion

Here we first look at the overall numeracy levels before reporting the results according to learning outcomes. We then look at the results in terms of quintile ranking and finally results in terms of language.

Numeracy levels

The table below provides the percentage of learners who achieved above 50% in the ANA in 2010 per grade compared to 2009 results. This is followed by the bar graph for 2010 results, that is, those learners who performed at achievement levels 3 and 4.
<table>
<thead>
<tr>
<th>Grade</th>
<th>Math 2009</th>
<th>Math 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gr 1</td>
<td>64</td>
<td>78</td>
</tr>
<tr>
<td>Gr 2</td>
<td>68</td>
<td>58</td>
</tr>
<tr>
<td>Gr 3</td>
<td>44</td>
<td>20</td>
</tr>
<tr>
<td>Gr 4</td>
<td>34</td>
<td>13</td>
</tr>
<tr>
<td>Gr 5</td>
<td>26</td>
<td>11</td>
</tr>
<tr>
<td>Gr 6</td>
<td>26</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 2: Percentage of learners per grade who achieved over 50% in 2009 and 2010

These figures and graph show that for Grades 1 and 2, the percentage of learners who obtained above 50% were 78 and 58 respectively. However, at the Grade 3 level, only 20% of learners got over 50%, and as the grade level progresses, the percentages decline further. The numbers of learners who obtained more than 50% in each grade are 78, 58, 20, 13, 11 and 12. These results look shocking. Only 12% of learners in the province were able to obtain above 50% in the numeracy test in Grade 6! One question which arises is whether or not there could be any good practices at the Foundation Phase that could be replicated at the higher phases that are currently absent?

If we lower the bar a bit and then look at the percentage of learners who achieved at Level 2 or above (i.e. who got over 34%), the results look a bit more encouraging.
What can we learn from the KZN ANA results?

The graph shows that 43% of Grade 3 learners were able to obtain over 30% as compared to only 20% who attained over 50%.

These results are still of concern, and actually mirror the national results as well. What could be possible reasons for the big drop from Grade 2 to Grade 3? The reason could partly be attributed to the fact that for Grades 1 and 2, the teacher was allowed to guide the learners through the test by reading each question out aloud. However, from Grades 3 to 6, learners had to understand the questions in the test themselves. The big drop from Grade 3 to Grade 4 also coincides with the change in Grade 4 in the language of learning and teaching, which changes from mother tongue to English and Afrikaans from Grade 4 onwards. This means a change in Grade 4 in the language of assessment of ANA as well, which generally changes from mother tongue to the first additional language, e.g. from isiZulu to English. The ANA tests are provided in 10 languages for Grades 1 to 3, but only in English and Afrikaans from Grade 4 onwards. However, we need to undertake further research to investigate and verify whether or not the possible reasons put forward are valid. A caution about linking the down turn in results in Grade 4 to the change in language of assessment or instruction was sounded by Gilmour (2011), who reported that there were similar results with Afrikaans speaking learners from townships in the Western Cape. The drop in the results between Grades 3 and 4 for that group of learners cannot be explained by a change in the language of learning and teaching, since there is no change in language for that group. Other reasons for this trend may lie in the conceptual progression in mathematics. This reason too, will not explain all the variation because similar trends are observed in the literacy results as well.

A huge concern is whether it makes sense to compare performance across grades or not. Can we compare the 82% of Grade 2 learners who achieved over 30% with the 43% of Grade 3 learners who achieved similar results? They have written different tests. However, the benchmarking function of ANA is to actually enable such comparisons, which may be valid if the conceptual progression is mapped clearly and specifically. For example, we can track how the calculation of the area of a rectangle develops progressively. In Grades 4 and 5, the area of a figure is introduced by counting squares in a grid, while the more advanced levels would require the use of a formula. At Grade 6 level, many concepts culminate in the introduction of formal methods, formulae or rules of mathematics such as long division, formulae for area and perimeter of a rectangle, and describing rules for pattern. It may thus be surmised that the lowest
level of achievement in Grade 6 coincides with the greatest demand for formalization that is made at Grade 6.

![Graph: Level distribution of % Learners: Numeracy KZN](image)

Figure 3: Level distribution by grade

Are these shocking results believable? Were the tests set at too high a level? We cannot say for sure until we study the exact items that were used. Let us consider the results of other tests, bearing in mind that the results in KZN are close to the national average.

For SACMEQ, an 8-level model of competencies was used. Learners who did not achieve at least 3 of these levels were deemed functionally innumerate. For South Africa, learners who achieved a mark of 40% or lower were considered to be innumerate because they were unable to achieve at least level 3. Spaull (2011) reports that this figure on innumeracy rates would be 40% (without taking out the numbers of learners who drop out before Grade 6). In ANA, we have 4 levels, and children who did not reach 35% (L1) could possibly be considered functionally innumerate. The percentages of innumerate learners would then be 9%, 18%, 57%, 70%, 73% and 68% in Grades 1 to 6 respectively. The 68% value at Grade 6 is much higher than the 40% measurement of functionally illiterate learners in SA from SACMEQ. This difference again points to the need for more research into the actual tools (in SACMEQ and ANA) that were used to obtain these results. This data supplemented by qualitative research methods focused on interviews with teachers, and subject advisors may provide more nuanced reasons for these reported trends.

Results related to Learning Outcomes

The graph below shows performance per LO according to grades.
What can we learn from the KZN ANA results?

The above graph shows differentiation in performance according to Learning Outcomes (LOs) where LO1 is numbers, LO2 is patterns and algebra, LO3 is shape and space, LO4 is measurement and LO5 is data handling. It can be seen that LO1 was experienced as most difficult in Grades 1 and 2, but was closely aligned to LO2. For Grades 3, 4 and 5, it was LO2 that was most difficult, with LO4 being the most difficult for Grade 6 learners. LO3 is about shape and space, and this was the area that learners in Grade 1 to 3 achieved the highest percentage. A scrutiny of the curriculum documents reveals that in Grades 1 to 3, the emphasis is mainly on shape recognition and basic ideas, while from Grade 5 onwards; there is an increasingly formal approach to identifying polygon names, and parts, as well as investigating properties and relationships between figures. There is a big dip in Grade 6 for LO4, which is measurement. Again, this coincides with a movement from counting and estimating to a formal treatment of measurement leading to the use of formulae for perimeter and area as well as investigating relationships between area and perimeter.

Results in terms of Quintile ranking

Results per quintile, in table form, are presented below.

<table>
<thead>
<tr>
<th>Quintile</th>
<th>Gr 1 ave</th>
<th>Gr 2 ave</th>
<th>Gr 3 ave</th>
<th>Gr 4 ave</th>
<th>Gr 5 ave</th>
<th>Gr 6 ave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q 1</td>
<td>42</td>
<td>40</td>
<td>31</td>
<td>17</td>
<td>15</td>
<td>19</td>
</tr>
<tr>
<td>Q 2</td>
<td>42</td>
<td>40</td>
<td>29</td>
<td>16</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>Q 3</td>
<td>42</td>
<td>38</td>
<td>29</td>
<td>17</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>Q 4</td>
<td>45</td>
<td>40</td>
<td>30</td>
<td>18</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>Q 5</td>
<td>53</td>
<td>46</td>
<td>36</td>
<td>27</td>
<td>28</td>
<td>30</td>
</tr>
</tbody>
</table>

Table 3: Average percentage achieved per quintile

What is clear from the above table is that schools in Quintile 5 have the highest average for each of the grades. Another trend is that for schools in Quintiles 1 to 4, the averages are closely clustered together. The difference between quintiles is very small for Quintiles 1 to 4. Thus, schools in Quintile 5 have much
higher grade averages compared to the combined averages of the other four quintiles. The following graph shows these differences more clearly.

![Grade Average per Quintile: Math](image)

Figure 5: Graph showing grade averages per quintile

There are significant differences in performance per quintile, according to Figure 5. So it would appear that these differences that are bemoaned later in Grade 12 and at tertiary level, have started manifesting themselves in the system right at Grade 1 level. ANA will provide the opportunity now to track the gaps between these quintiles at Grade 1, and gaps in achievement between the quintiles in Grade 12. In terms of allocation of money to schools in the different quintiles, the amount per child received in a Quintile 1 school is about R800 compared to the R160 per child in a Quintile 5 school. These results show that changing the amount of money allocated makes little difference, and that the problem is more deeply rooted. In KZN, only 13% of schools are classified as Quintile 5 schools (Christie, Butler & Potterton, 2007: 44)

What emerges is that there is little difference in the first 4 quintiles, which are all clustered together, but there are significant differences between the results in the highest and lowest quintile. These trends are similar to those observed by Spaull (2011: 18) in his report on SACMEQ, that the highest quintile “far outperforms the lower four quintiles to the extent that one may think that this … [was] were depicting two educational systems, not one”. These results in ANA and SACMEQ are early indicators of the problem faced by mainly black learners in Grade 12. Van der Berg (2007) pointed out that only 15.5 % of black candidates passed mathematics at Higher Grade in 2000. Van der Berg (2007) further estimated that half of the A-achieving black candidates attended schools in which blacks were not the majority. Christie *et al.* (2007: 55) point to the endurance of organisational patterns and cultures at departmental and school levels as a reason for the unequal performance of schools.

Results in terms of language and performance

Of interest are the results of learners when disaggregated by the home language of learners.

<table>
<thead>
<tr>
<th>Language</th>
<th>Gr 1</th>
<th>Gr 2</th>
<th>Gr 3</th>
<th>Gr 4</th>
<th>Gr 5</th>
<th>Gr 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afrikaans</td>
<td>66%</td>
<td>58%</td>
<td>40%</td>
<td>34%</td>
<td>40%</td>
<td>39%</td>
</tr>
<tr>
<td>English</td>
<td>49%</td>
<td>43%</td>
<td>31%</td>
<td>18%</td>
<td>23%</td>
<td>20%</td>
</tr>
<tr>
<td>SeSotho</td>
<td>36%</td>
<td>36%</td>
<td>24%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>isiXhosa</td>
<td>37%</td>
<td>36%</td>
<td>26%</td>
<td>15%</td>
<td>13%</td>
<td>0%</td>
</tr>
</tbody>
</table>
What can we learn from the KZN ANA results?

<table>
<thead>
<tr>
<th>Language</th>
<th>42%</th>
<th>40%</th>
<th>31%</th>
<th>18%</th>
<th>13%</th>
<th>17%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Province</td>
<td>44%</td>
<td>40%</td>
<td>31%</td>
<td>18%</td>
<td>16%</td>
<td>20%</td>
</tr>
</tbody>
</table>

Table 4: Grade averages in terms of home language of learners

These results when represented graphically, are shown below:

![Bar graph showing grade averages in terms of home language of learners](image)

Figure 6: Bar graph showing grade averages in terms of home language of learners

The language classification here was generated by the learners’ responses to what their home language was. We see that performance by learners who speak Afrikaans as a first language is the highest across all the grades. It is important to note that the group of learners whose home language is Afrikaans forms the smallest language group in KZN. From Hugo et al. (2010: 59), we can access the Annual Learner survey results, showing that 88% of learners use isiZulu as a home language, 8% speak English, 3% speak isiXhosa and 0.7% Afrikaans. In terms of LOLT, it is 70% of learners who are taught in English, 27% taught in isiZulu and 1.4% in Afrikaans. So the number of learners who are not Afrikaans speaking but who are taught in Afrikaans, is a small subgroup of 8400 learners. This is compared to 62% or 744 000 learners who are taught in English but whose home language is not English. Hugo et al. reported that 60% of all learners in the province are isiZulu speakers who are taught in English.

Concluding Remarks

We believe that the process undertaken in conceptualising and implementing ANA has been a big step for Education in South Africa. In this paper we have looked at the results of ANA in KZN and used these to highlight some trends, commonalities and disjunctures. We have also put forward possible reasons for some of the trends. We have discussed the results in terms of performance per grade and found that the percentage of learners who obtained 50% or higher were 78, 58, 20, 13, 11 and 12 in Grades 1 to 6 respectively. The results per grade in terms of the various learning outcomes were also discussed. Thereafter, the grade average per quintile was elaborated upon and it was highlighted that the disparity in performance per quintile, that is usually only noticed in Grade 12, is already evident in ANA results right from Grade 1 onwards. These disparities point to systemic issues and blockages which need urgently to be addressed. Finally, we also looked at differentiation in the ANA mathematics results in terms of the
home language of the learner. It was found that the learners whose home language was Afrikaans achieved the highest results, with the highest percentage of learners achieving levels 3 and 4 in all grades: this differs from the other language groups, where the highest numbers of learners were performing at Level 1 for Grades 3 to 6.

However, the identification of these trends is an initial step for ANA and much research lies ahead in order to identify reasons for the results, and then to plan and carry out interventions which can address the blockages and barriers to quality education. We thus conclude this paper by identifying some challenges for ANA. The design and implementation of ANA has been done by the national DBE in an impressive manner. However, most of the value that ANA offers for improving learning lies in the capacity of Provincial Education Departments, who should ensure that districts, schools and teachers take up the ANA information and use it for improvements in the system. There is thus an urgency that the National Department works closely with the province to build up the capacity and to support them as they do the follow-up of the results.

Another potential weak link is that of the role of teachers. There are two important links in ANA that depend on the teachers. The first is in the marking of the scripts. It was found that on average, teachers gave slightly lower marks than they should have in the tests. However, it was reported that “on average teachers are able to mark at the required standard and use the ANA memoranda correctly- especially in mathematics” (DBE, 2011: 24). Perhaps this role of marking can be managed by clusters as in the case of the continuous assessment system of moderation of marks. Another point where the teachers play a crucial role is at the Grade 1 and Grade 2 levels, where teachers read out and explain the items to their learners. It is not clear whether the teachers’ interventions in Grade 1 and 2 contributed to the high performance in those two grades.

More research will need to be done on the actual items, in order to investigate their fitness for purpose and classification according to the various levels and their match with the curriculum.

In improving ANA, the DBE must make it a priority to provide opportunities for teachers, learners and parents to provide feedback on how it could be improved. The previous Grade 9 national assessments called the Common Tasks for Assessment (CTA) continued from 2002 until 2010, when it was quietly terminated without reports on what the termination decision was based on. Many teachers, researchers and learners, especially second language speakers, had been complaining about the mismatch between the CTA and their class assessments, but the programme continued for many years. The problems associated with the CTA were that all activities were based on an extended real-life context, which added a heavy language load. In South Africa, this caused great problems for the majority of learners who speak English as a second language (ESL) but are taught in English (Khan 2009; Bansilal & Khan 2010, Bansilal & Wallace, 2008). It is thus recommended that, unlike the situation with the CTA, where the Department of Education did not provide opportunities for feedback, the DBE should build early formal opportunities for feedback from people in all sectors.
What can we learn from the KZN ANA results?

References

